Nuprl Lemma : add-polynom-int-val
∀[n:ℕ]. ∀[l:{l:ℤ List| ||l|| = n ∈ ℤ} ]. ∀[p,q:polyform(n)]. ∀[rmz:𝔹].  (add-polynom(n;rmz;p;q)@l = (p@l + q@l) ∈ ℤ)
Proof
Definitions occuring in Statement : 
add-polynom: add-polynom(n;rmz;p;q), 
poly-int-val: p@l, 
polyform: polyform(n), 
length: ||as||, 
list: T List, 
nat: ℕ, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} , 
add: n + m, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
poly-zero: poly-zero(n;p), 
so_apply: x[s1;s2;s3], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
rm-zeros: rm-zeros(n;p), 
true: True, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
nequal: a ≠ b ∈ T , 
has-valueall: has-valueall(a), 
has-value: (a)↓, 
list_ind: list_ind, 
length: ||as||, 
evalall: evalall(t), 
callbyvalueall: callbyvalueall, 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
colength: colength(L), 
squash: ↓T, 
cons: [a / b], 
nil: [], 
null: null(as), 
poly-int-val: p@l, 
subtract: n - m, 
eq_int: (i =z j), 
add-polynom: add-polynom(n;rmz;p;q), 
less_than: a < b, 
int_upper: {i...}, 
assert: ↑b, 
bnot: ¬bb, 
sq_type: SQType(T), 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
polyform: polyform(n), 
or: P ∨ Q, 
decidable: Dec(P), 
less_than': less_than'(a;b), 
le: A ≤ B, 
lelt: i ≤ j < k, 
so_apply: x[s], 
int_seg: {i..j-}, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
prop: ℙ, 
and: P ∧ Q, 
top: Top, 
not: ¬A, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
uimplies: b supposing a, 
ge: i ≥ j , 
false: False, 
implies: P ⇒ Q, 
nat: ℕ, 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
btrue_neq_bfalse, 
iff_imp_equal_bool, 
bool_cases, 
assert_of_null, 
int_upper_wf, 
poly-zero_wf, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
poly_int_val_cons, 
select_wf, 
sum_wf, 
btrue_wf, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
assert_of_le_int, 
le_int_wf, 
imax_unfold, 
add-polynom-length, 
subtract-add-cancel, 
bfalse_wf, 
top_wf, 
int-value-type, 
value-type-has-value, 
iff_weakening_equal, 
poly_int_val_cons_cons, 
add_functionality_wrt_eq, 
true_wf, 
squash_wf, 
length_wf_nat, 
exp_wf2, 
add-polynom_wf1, 
null_cons_lemma, 
poly-int-val_wf, 
poly_int_val_nil_cons, 
assert_of_bnot, 
iff_weakening_uiff, 
iff_transitivity, 
uiff_transitivity, 
subtype_rel-equal, 
evalall-reduce, 
valueall-type-polyform, 
list-valueall-type, 
valueall-type-has-valueall, 
null_nil_lemma, 
not_wf, 
bnot_wf, 
assert_wf, 
set_subtype_base, 
spread_cons_lemma, 
colength_wf_list, 
equal-wf-T-base, 
cons_wf, 
add-is-int-iff, 
length_of_nil_lemma, 
int_upper_properties, 
equal-wf-base, 
non_neg_length, 
length_wf, 
le_weakening2, 
length_of_cons_lemma, 
product_subtype_list, 
list-cases, 
nat_wf, 
int_subtype_base, 
list_subtype_base, 
int_term_value_add_lemma, 
itermAdd_wf, 
lelt_wf, 
decidable__lt, 
zero-add, 
nequal-le-implies, 
int_upper_subtype_nat, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
eq_int_wf, 
le_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
int_seg_subtype, 
decidable__equal_int, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
false_wf, 
int_seg_subtype_nat, 
int_seg_properties, 
int_seg_wf, 
equal-wf-base-T, 
list_wf, 
set_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
polyform_wf, 
bool_wf, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties
Rules used in proof : 
sqequalAxiom, 
lessCases, 
universeEquality, 
multiplyEquality, 
impliesFunctionality, 
sqleReflexivity, 
callbyvalueReduce, 
imageElimination, 
imageMemberEquality, 
pointwiseFunctionality, 
addEquality, 
cumulativity, 
instantiate, 
promote_hyp, 
equalityElimination, 
dependent_set_memberEquality, 
hypothesis_subsumption, 
applyLambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
unionElimination, 
productElimination, 
baseClosed, 
closedConclusion, 
baseApply, 
because_Cache, 
applyEquality, 
axiomEquality, 
independent_functionElimination, 
computeAll, 
independent_pairFormation, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_isectElimination, 
natural_numberEquality, 
intWeakElimination, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
lambdaFormation, 
thin, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  ].  \mforall{}[p,q:polyform(n)].  \mforall{}[rmz:\mBbbB{}].
    (add-polynom(n;rmz;p;q)@l  =  (p@l  +  q@l))
Date html generated:
2017_04_20-AM-07_10_00
Last ObjectModification:
2017_04_17-PM-00_39_02
Theory : list_1
Home
Index