Nuprl Lemma : l_exists_or

[T:Type]. ∀L:T List. ∀P,Q:{x:T| (x ∈ L)}  ⟶ ℙ.  ((∃x∈L. P[x]) ∨ (∃x∈L. Q[x]) ⇐⇒ (∃x∈L. P[x] ∨ Q[x]))


Proof




Definitions occuring in Statement :  l_exists: (∃x∈L. P[x]) l_member: (x ∈ l) list: List uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q or: P ∨ Q l_exists: (∃x∈L. P[x]) exists: x:A. B[x] uimplies: supposing a int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k squash: T guard: {T}
Lemmas referenced :  sq_stable__le list-subtype select_wf list_wf l_member_wf l_exists_wf or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality setEquality hypothesis functionEquality cumulativity universeEquality unionElimination productElimination dependent_pairFormation inlFormation because_Cache equalityTransitivity equalitySymmetry independent_isectElimination setElimination rename natural_numberEquality independent_functionElimination introduction imageMemberEquality baseClosed imageElimination inrFormation

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}P,Q:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}.    ((\mexists{}x\mmember{}L.  P[x])  \mvee{}  (\mexists{}x\mmember{}L.  Q[x])  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}x\mmember{}L.  P[x]  \mvee{}  Q[x]))



Date html generated: 2016_05_14-AM-06_40_28
Last ObjectModification: 2016_01_14-PM-08_20_40

Theory : list_0


Home Index