Nuprl Lemma : test-arith-length-additions

T:Type. ∀a:T. ∀b:T List. ∀i:ℤ.  (i < ||[a b]||  i < ||b|| 1)


Proof




Definitions occuring in Statement :  length: ||as|| cons: [a b] list: List less_than: a < b all: x:A. B[x] implies:  Q add: m natural_number: $n int: universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] top: Top
Lemmas referenced :  less_than_wf length_wf cons_wf list_wf length_of_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality intEquality universeEquality sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}T:Type.  \mforall{}a:T.  \mforall{}b:T  List.  \mforall{}i:\mBbbZ{}.    (i  <  ||[a  /  b]||  {}\mRightarrow{}  i  <  ||b||  +  1)



Date html generated: 2016_05_14-AM-06_33_56
Last ObjectModification: 2015_12_26-PM-00_36_04

Theory : list_0


Home Index