Nuprl Lemma : cons-l_contains

[T:Type]. ∀A,B:T List. ∀x:T.  (A ⊆  A ⊆ [x B])


Proof




Definitions occuring in Statement :  l_contains: A ⊆ B cons: [a b] list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] prop:
Lemmas referenced :  l_contains-append4 cons_wf nil_wf list_ind_cons_lemma list_ind_nil_lemma l_contains_wf list_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation dependent_functionElimination independent_functionElimination sqequalRule isect_memberEquality voidElimination voidEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}A,B:T  List.  \mforall{}x:T.    (A  \msubseteq{}  B  {}\mRightarrow{}  A  \msubseteq{}  [x  /  B])



Date html generated: 2016_05_14-AM-07_55_13
Last ObjectModification: 2015_12_26-PM-04_49_13

Theory : list_1


Home Index