Nuprl Lemma : cons-l_contains
∀[T:Type]. ∀A,B:T List. ∀x:T.  (A ⊆ B 
⇒ A ⊆ [x / B])
Proof
Definitions occuring in Statement : 
l_contains: A ⊆ B
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
prop: ℙ
Lemmas referenced : 
l_contains-append4, 
cons_wf, 
nil_wf, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
l_contains_wf, 
list_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}A,B:T  List.  \mforall{}x:T.    (A  \msubseteq{}  B  {}\mRightarrow{}  A  \msubseteq{}  [x  /  B])
Date html generated:
2016_05_14-AM-07_55_13
Last ObjectModification:
2015_12_26-PM-04_49_13
Theory : list_1
Home
Index