Nuprl Lemma : eval-list_wf

[L:ℤ List]. (eval-list(L) ∈ {L':ℤ List| L' L ∈ (ℤ List)} )


Proof




Definitions occuring in Statement :  eval-list: eval-list(L) list: List uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eval-list: eval-list(L) uimplies: supposing a id-fun: id-fun(T) subtype_rel: A ⊆B prop: all: x:A. B[x] implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  norm-list_wf int-value-type equal-wf-base int_subtype_base id-fun_wf list_wf subtype_rel_sets list_subtype_base equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis lambdaEquality dependent_set_memberEquality hypothesisEquality applyEquality lambdaFormation because_Cache setElimination rename setEquality equalitySymmetry equalityTransitivity dependent_functionElimination independent_functionElimination axiomEquality

Latex:
\mforall{}[L:\mBbbZ{}  List].  (eval-list(L)  \mmember{}  \{L':\mBbbZ{}  List|  L'  =  L\}  )



Date html generated: 2017_04_14-AM-09_27_55
Last ObjectModification: 2017_02_27-PM-04_01_05

Theory : list_1


Home Index