Nuprl Lemma : l-last_wf

[T:Type]. ∀[L:T List].  l-last(L) ∈ supposing ¬↑null(L)


Proof




Definitions occuring in Statement :  l-last: l-last(l) null: null(as) list: List assert: b uimplies: supposing a uall: [x:A]. B[x] not: ¬A member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt not: ¬A implies:  Q true: True false: False cons: [a b] top: Top bfalse: ff l-last: l-last(l) l-last-default: l-last-default(l;d) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] prop:
Lemmas referenced :  list-cases null_nil_lemma product_subtype_list null_cons_lemma list_ind_cons_lemma list_ind_wf list_wf not_wf assert_wf null_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_functionElimination unionElimination sqequalRule independent_functionElimination natural_numberEquality voidElimination promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidEquality applyEquality functionEquality lambdaEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    l-last(L)  \mmember{}  T  supposing  \mneg{}\muparrow{}null(L)



Date html generated: 2016_05_14-AM-07_41_45
Last ObjectModification: 2015_12_26-PM-02_51_25

Theory : list_1


Home Index