Nuprl Lemma : l_all-mapfilter
∀[T,A:Type].
  ∀as:T List. ∀p:{a:T| (a ∈ as)}  ⟶ 𝔹. ∀f:{a:T| (a ∈ as) ∧ (↑(p a))}  ⟶ A. ∀P:A ⟶ ℙ.
    ((∀x∈mapfilter(f;p;as).P[x]) 
⇐⇒ (∀x∈as.(↑(p x)) 
⇒ P[f x]))
Proof
Definitions occuring in Statement : 
mapfilter: mapfilter(f;P;L)
, 
l_all: (∀x∈L.P[x])
, 
l_member: (x ∈ l)
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
istype: istype(T)
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
exists: ∃x:A. B[x]
, 
guard: {T}
Lemmas referenced : 
l_all_wf, 
mapfilter_wf, 
l_member_wf, 
list-subtype, 
assert_wf, 
subtype_rel_dep_function, 
istype-universe, 
l_all_iff, 
subtype_rel_self, 
bool_wf, 
list_wf, 
member-mapfilter
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setEquality, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
functionExtensionality, 
applyEquality, 
setElimination, 
rename, 
Error :dependent_set_memberEquality_alt, 
independent_pairFormation, 
sqequalRule, 
Error :productIsType, 
Error :universeIsType, 
instantiate, 
cumulativity, 
Error :lambdaEquality_alt, 
universeEquality, 
because_Cache, 
Error :setIsType, 
independent_isectElimination, 
dependent_functionElimination, 
functionEquality, 
productEquality, 
productElimination, 
independent_functionElimination, 
Error :functionIsType, 
Error :inhabitedIsType, 
Error :dependent_pairFormation_alt, 
Error :equalityIsType1, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[T,A:Type].
    \mforall{}as:T  List.  \mforall{}p:\{a:T|  (a  \mmember{}  as)\}    {}\mrightarrow{}  \mBbbB{}.  \mforall{}f:\{a:T|  (a  \mmember{}  as)  \mwedge{}  (\muparrow{}(p  a))\}    {}\mrightarrow{}  A.  \mforall{}P:A  {}\mrightarrow{}  \mBbbP{}.
        ((\mforall{}x\mmember{}mapfilter(f;p;as).P[x])  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x\mmember{}as.(\muparrow{}(p  x))  {}\mRightarrow{}  P[f  x]))
Date html generated:
2019_06_20-PM-01_27_40
Last ObjectModification:
2018_10_05-AM-10_53_17
Theory : list_1
Home
Index