Nuprl Lemma : l_all-mapfilter

[T,A:Type].
  ∀as:T List. ∀p:{a:T| (a ∈ as)}  ⟶ 𝔹. ∀f:{a:T| (a ∈ as) ∧ (↑(p a))}  ⟶ A. ∀P:A ⟶ ℙ.
    ((∀x∈mapfilter(f;p;as).P[x]) ⇐⇒ (∀x∈as.(↑(p x))  P[f x]))


Proof




Definitions occuring in Statement :  mapfilter: mapfilter(f;P;L) l_all: (∀x∈L.P[x]) l_member: (x ∈ l) list: List assert: b bool: 𝔹 uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T prop: and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a istype: istype(T) iff: ⇐⇒ Q implies:  Q rev_implies:  Q cand: c∧ B exists: x:A. B[x] guard: {T}
Lemmas referenced :  l_all_wf mapfilter_wf l_member_wf list-subtype assert_wf subtype_rel_dep_function istype-universe l_all_iff subtype_rel_self bool_wf list_wf member-mapfilter
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setEquality hypothesis equalityTransitivity equalitySymmetry functionExtensionality applyEquality setElimination rename Error :dependent_set_memberEquality_alt,  independent_pairFormation sqequalRule Error :productIsType,  Error :universeIsType,  instantiate cumulativity Error :lambdaEquality_alt,  universeEquality because_Cache Error :setIsType,  independent_isectElimination dependent_functionElimination functionEquality productEquality productElimination independent_functionElimination Error :functionIsType,  Error :inhabitedIsType,  Error :dependent_pairFormation_alt,  Error :equalityIsType1,  hyp_replacement applyLambdaEquality

Latex:
\mforall{}[T,A:Type].
    \mforall{}as:T  List.  \mforall{}p:\{a:T|  (a  \mmember{}  as)\}    {}\mrightarrow{}  \mBbbB{}.  \mforall{}f:\{a:T|  (a  \mmember{}  as)  \mwedge{}  (\muparrow{}(p  a))\}    {}\mrightarrow{}  A.  \mforall{}P:A  {}\mrightarrow{}  \mBbbP{}.
        ((\mforall{}x\mmember{}mapfilter(f;p;as).P[x])  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x\mmember{}as.(\muparrow{}(p  x))  {}\mRightarrow{}  P[f  x]))



Date html generated: 2019_06_20-PM-01_27_40
Last ObjectModification: 2018_10_05-AM-10_53_17

Theory : list_1


Home Index