Nuprl Lemma : l_all-mapfilter
∀[T,A:Type].
∀as:T List. ∀p:{a:T| (a ∈ as)} ⟶ 𝔹. ∀f:{a:T| (a ∈ as) ∧ (↑(p a))} ⟶ A. ∀P:A ⟶ ℙ.
((∀x∈mapfilter(f;p;as).P[x])
⇐⇒ (∀x∈as.(↑(p x))
⇒ P[f x]))
Proof
Definitions occuring in Statement :
mapfilter: mapfilter(f;P;L)
,
l_all: (∀x∈L.P[x])
,
l_member: (x ∈ l)
,
list: T List
,
assert: ↑b
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
and: P ∧ Q
,
set: {x:A| B[x]}
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
prop: ℙ
,
and: P ∧ Q
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
,
istype: istype(T)
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
rev_implies: P
⇐ Q
,
cand: A c∧ B
,
exists: ∃x:A. B[x]
,
guard: {T}
Lemmas referenced :
l_all_wf,
mapfilter_wf,
l_member_wf,
list-subtype,
assert_wf,
subtype_rel_dep_function,
istype-universe,
l_all_iff,
subtype_rel_self,
bool_wf,
list_wf,
member-mapfilter
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
Error :lambdaFormation_alt,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
setEquality,
hypothesis,
equalityTransitivity,
equalitySymmetry,
functionExtensionality,
applyEquality,
setElimination,
rename,
Error :dependent_set_memberEquality_alt,
independent_pairFormation,
sqequalRule,
Error :productIsType,
Error :universeIsType,
instantiate,
cumulativity,
Error :lambdaEquality_alt,
universeEquality,
because_Cache,
Error :setIsType,
independent_isectElimination,
dependent_functionElimination,
functionEquality,
productEquality,
productElimination,
independent_functionElimination,
Error :functionIsType,
Error :inhabitedIsType,
Error :dependent_pairFormation_alt,
Error :equalityIsType1,
hyp_replacement,
applyLambdaEquality
Latex:
\mforall{}[T,A:Type].
\mforall{}as:T List. \mforall{}p:\{a:T| (a \mmember{} as)\} {}\mrightarrow{} \mBbbB{}. \mforall{}f:\{a:T| (a \mmember{} as) \mwedge{} (\muparrow{}(p a))\} {}\mrightarrow{} A. \mforall{}P:A {}\mrightarrow{} \mBbbP{}.
((\mforall{}x\mmember{}mapfilter(f;p;as).P[x]) \mLeftarrow{}{}\mRightarrow{} (\mforall{}x\mmember{}as.(\muparrow{}(p x)) {}\mRightarrow{} P[f x]))
Date html generated:
2019_06_20-PM-01_27_40
Last ObjectModification:
2018_10_05-AM-10_53_17
Theory : list_1
Home
Index