Nuprl Lemma : l_disjoint_member
∀[T:Type]. ∀[l1,l2:T List]. ∀[x:T].  (¬(x ∈ l2)) supposing ((x ∈ l1) and l_disjoint(T;l1;l2))
Proof
Definitions occuring in Statement : 
l_disjoint: l_disjoint(T;l1;l2)
, 
l_member: (x ∈ l)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
universe: Type
Definitions unfolded in proof : 
l_disjoint: l_disjoint(T;l1;l2)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cand: A c∧ B
Lemmas referenced : 
l_member_wf, 
not_wf, 
all_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
Error :universeIsType, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsType, 
Error :inhabitedIsType, 
productEquality, 
universeEquality, 
independent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}[l1,l2:T  List].  \mforall{}[x:T].    (\mneg{}(x  \mmember{}  l2))  supposing  ((x  \mmember{}  l1)  and  l\_disjoint(T;l1;l2))
Date html generated:
2019_06_20-PM-01_26_57
Last ObjectModification:
2018_09_26-PM-05_37_07
Theory : list_1
Home
Index