Nuprl Lemma : l_subset_pos_length

[T:Type]. ∀[A,B:T List].  (0 < ||B||) supposing (0 < ||A|| and l_subset(T;A;B))


Proof




Definitions occuring in Statement :  l_subset: l_subset(T;as;bs) length: ||as|| list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q
Lemmas referenced :  l_contains_pos_length member-less_than length_wf less_than_wf l_subset_wf list_wf l_subset-l_contains
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality introduction independent_isectElimination sqequalRule isect_memberEquality natural_numberEquality equalityTransitivity equalitySymmetry because_Cache universeEquality dependent_functionElimination productElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[A,B:T  List].    (0  <  ||B||)  supposing  (0  <  ||A||  and  l\_subset(T;A;B))



Date html generated: 2016_05_14-AM-07_53_40
Last ObjectModification: 2015_12_26-PM-04_47_41

Theory : list_1


Home Index