Nuprl Lemma : l_subset_pos_length
∀[T:Type]. ∀[A,B:T List].  (0 < ||B||) supposing (0 < ||A|| and l_subset(T;A;B))
Proof
Definitions occuring in Statement : 
l_subset: l_subset(T;as;bs)
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
l_contains_pos_length, 
member-less_than, 
length_wf, 
less_than_wf, 
l_subset_wf, 
list_wf, 
l_subset-l_contains
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
introduction, 
independent_isectElimination, 
sqequalRule, 
isect_memberEquality, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
universeEquality, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[A,B:T  List].    (0  <  ||B||)  supposing  (0  <  ||A||  and  l\_subset(T;A;B))
Date html generated:
2016_05_14-AM-07_53_40
Last ObjectModification:
2015_12_26-PM-04_47_41
Theory : list_1
Home
Index