Nuprl Lemma : mapfilter-reverse
∀[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[f:Top]. ∀[L:T List].  (mapfilter(f;P;rev(L)) ~ rev(mapfilter(f;P;L)))
Proof
Definitions occuring in Statement : 
mapfilter: mapfilter(f;P;L)
, 
reverse: rev(as)
, 
list: T List
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
mapfilter: mapfilter(f;P;L)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Lemmas referenced : 
filter-reverse, 
map-reverse, 
filter_wf_top, 
subtype_rel_dep_function, 
bool_wf, 
l_member_wf, 
subtype_rel_self, 
set_wf, 
list_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
because_Cache, 
lambdaFormation, 
functionEquality, 
universeEquality, 
isect_memberFormation, 
introduction, 
sqequalAxiom, 
isect_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:Top].  \mforall{}[L:T  List].    (mapfilter(f;P;rev(L))  \msim{}  rev(mapfilter(f;P;L)))
Date html generated:
2016_05_14-PM-03_10_54
Last ObjectModification:
2015_12_26-PM-01_49_14
Theory : list_1
Home
Index