Nuprl Lemma : pairwise-filter
∀[T:Type]. ∀L:T List. ∀[P:T ⟶ T ⟶ ℙ']. ((∀x,y∈L.  P[x;y]) 
⇒ (∀Q:T ⟶ 𝔹. (∀x,y∈filter(Q;L).  P[x;y])))
Proof
Definitions occuring in Statement : 
pairwise: (∀x,y∈L.  P[x; y])
, 
filter: filter(P;l)
, 
list: T List
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
Lemmas referenced : 
bool_wf, 
pairwise_wf2, 
list_wf, 
pairwise-sublist, 
filter_wf5, 
subtype_rel_dep_function, 
l_member_wf, 
subtype_rel_self, 
set_wf, 
filter_is_sublist
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
functionEquality, 
hypothesisEquality, 
cut, 
lemma_by_obid, 
hypothesis, 
thin, 
instantiate, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
universeEquality, 
dependent_functionElimination, 
because_Cache, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
independent_functionElimination
Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}[P:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}'].  ((\mforall{}x,y\mmember{}L.    P[x;y])  {}\mRightarrow{}  (\mforall{}Q:T  {}\mrightarrow{}  \mBbbB{}.  (\mforall{}x,y\mmember{}filter(Q;L).    P[x;y])))
Date html generated:
2016_05_14-PM-01_50_15
Last ObjectModification:
2015_12_26-PM-05_36_45
Theory : list_1
Home
Index