Nuprl Lemma : pairwise-filter

[T:Type]. ∀L:T List. ∀[P:T ⟶ T ⟶ ℙ']. ((∀x,y∈L.  P[x;y])  (∀Q:T ⟶ 𝔹(∀x,y∈filter(Q;L).  P[x;y])))


Proof




Definitions occuring in Statement :  pairwise: (∀x,y∈L.  P[x; y]) filter: filter(P;l) list: List bool: 𝔹 uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a
Lemmas referenced :  bool_wf pairwise_wf2 list_wf pairwise-sublist filter_wf5 subtype_rel_dep_function l_member_wf subtype_rel_self set_wf filter_is_sublist
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation functionEquality hypothesisEquality cut lemma_by_obid hypothesis thin instantiate sqequalHypSubstitution isectElimination cumulativity sqequalRule lambdaEquality applyEquality universeEquality dependent_functionElimination because_Cache setEquality independent_isectElimination setElimination rename independent_functionElimination

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}[P:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}'].  ((\mforall{}x,y\mmember{}L.    P[x;y])  {}\mRightarrow{}  (\mforall{}Q:T  {}\mrightarrow{}  \mBbbB{}.  (\mforall{}x,y\mmember{}filter(Q;L).    P[x;y])))



Date html generated: 2016_05_14-PM-01_50_15
Last ObjectModification: 2015_12_26-PM-05_36_45

Theory : list_1


Home Index