Nuprl Lemma : permutation-mapfilter

[A:Type]
  ∀L1,L2:A List.
    (permutation(A;L1;L2)
     (∀p:A ⟶ 𝔹. ∀[B:Type]. ∀f:{a:A| ↑(p a)}  ⟶ B. permutation(B;mapfilter(f;p;L1);mapfilter(f;p;L2))))


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) mapfilter: mapfilter(f;P;L) list: List assert: b bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q mapfilter: mapfilter(f;P;L) member: t ∈ T prop:
Lemmas referenced :  permutation-map assert_wf filter_type permutation-filter bool_wf permutation_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesisEquality applyEquality hypothesis dependent_functionElimination cumulativity because_Cache independent_functionElimination functionEquality universeEquality

Latex:
\mforall{}[A:Type]
    \mforall{}L1,L2:A  List.
        (permutation(A;L1;L2)
        {}\mRightarrow{}  (\mforall{}p:A  {}\mrightarrow{}  \mBbbB{}
                    \mforall{}[B:Type].  \mforall{}f:\{a:A|  \muparrow{}(p  a)\}    {}\mrightarrow{}  B.  permutation(B;mapfilter(f;p;L1);mapfilter(f;p;L2))))



Date html generated: 2016_05_14-PM-02_34_05
Last ObjectModification: 2015_12_26-PM-04_20_28

Theory : list_1


Home Index