Nuprl Lemma : permutation-map

[A:Type]. ∀L1,L2:A List.  (permutation(A;L1;L2)  (∀[B:Type]. ∀f:A ⟶ B. permutation(B;map(f;L1);map(f;L2))))


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) map: map(f;as) list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q permutation: permutation(T;L1;L2) exists: x:A. B[x] member: t ∈ T and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top nat: cand: c∧ B int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥ 
Lemmas referenced :  subtype_rel_dep_function int_seg_wf length_wf map_wf int_seg_subtype false_wf le_wf map_length_nat iff_weakening_equal decidable__le satisfiable-full-omega-tt intformnot_wf intformle_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf list_extensionality permute_list_wf map-length less_than_wf nat_wf equal_wf list_wf inject_wf permutation_wf permute_list_length lelt_wf select_wf non_neg_length nat_properties length_wf_nat int_seg_properties intformand_wf itermConstant_wf int_formula_prop_and_lemma int_term_value_constant_lemma decidable__lt intformless_wf int_formula_prop_less_lemma length-map map_select permute_list_select
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation cut hypothesisEquality applyEquality introduction extract_by_obid isectElimination natural_numberEquality cumulativity hypothesis sqequalRule lambdaEquality functionExtensionality independent_isectElimination because_Cache independent_pairFormation imageElimination imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_functionElimination dependent_functionElimination unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll promote_hyp setElimination rename hyp_replacement applyLambdaEquality productEquality functionEquality universeEquality dependent_set_memberEquality

Latex:
\mforall{}[A:Type]
    \mforall{}L1,L2:A  List.
        (permutation(A;L1;L2)  {}\mRightarrow{}  (\mforall{}[B:Type].  \mforall{}f:A  {}\mrightarrow{}  B.  permutation(B;map(f;L1);map(f;L2))))



Date html generated: 2017_04_17-AM-08_24_31
Last ObjectModification: 2017_02_27-PM-04_47_19

Theory : list_1


Home Index