Nuprl Lemma : single-valued-list_wf
∀T:Type. ∀[L:T List]. (single-valued-list(L;T) ∈ ℙ)
Proof
Definitions occuring in Statement : 
single-valued-list: single-valued-list(L;T)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
single-valued-list: single-valued-list(L;T)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
l_member_wf, 
equal_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}[L:T  List].  (single-valued-list(L;T)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-PM-03_01_43
Last ObjectModification:
2015_12_26-PM-01_56_30
Theory : list_1
Home
Index