Nuprl Lemma : single-valued-list_wf
∀T:Type. ∀[L:T List]. (single-valued-list(L;T) ∈ ℙ)
Proof
Definitions occuring in Statement :
single-valued-list: single-valued-list(L;T)
,
list: T List
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
single-valued-list: single-valued-list(L;T)
,
so_lambda: λ2x.t[x]
,
implies: P
⇒ Q
,
prop: ℙ
,
so_apply: x[s]
Lemmas referenced :
all_wf,
l_member_wf,
equal_wf,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
lambdaEquality,
functionEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
universeEquality
Latex:
\mforall{}T:Type. \mforall{}[L:T List]. (single-valued-list(L;T) \mmember{} \mBbbP{})
Date html generated:
2016_05_14-PM-03_01_43
Last ObjectModification:
2015_12_26-PM-01_56_30
Theory : list_1
Home
Index