Nuprl Lemma : single-valued-list_wf

T:Type. ∀[L:T List]. (single-valued-list(L;T) ∈ ℙ)


Proof




Definitions occuring in Statement :  single-valued-list: single-valued-list(L;T) list: List uall: [x:A]. B[x] prop: all: x:A. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T single-valued-list: single-valued-list(L;T) so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  all_wf l_member_wf equal_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality functionEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}T:Type.  \mforall{}[L:T  List].  (single-valued-list(L;T)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-03_01_43
Last ObjectModification: 2015_12_26-PM-01_56_30

Theory : list_1


Home Index