Nuprl Lemma : sorted-by-single
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀x:T. sorted-by(R;[x])
Proof
Definitions occuring in Statement : 
sorted-by: sorted-by(R;L)
, 
cons: [a / b]
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
sorted-by: sorted-by(R;L)
, 
member: t ∈ T
, 
top: Top
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
prop: ℙ
Lemmas referenced : 
int_seg_wf, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
int_seg_properties, 
length_of_nil_lemma, 
length_of_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x:T.  sorted-by(R;[x])
Date html generated:
2016_05_14-PM-01_47_18
Last ObjectModification:
2016_01_15-AM-08_18_48
Theory : list_1
Home
Index