Nuprl Lemma : unzip-zip

[as,bs:Top List].  unzip(zip(as;bs)) ~ <as, bs> supposing ||as|| ||bs|| ∈ ℤ


Proof




Definitions occuring in Statement :  unzip: unzip(as) zip: zip(as;bs) length: ||as|| list: List uimplies: supposing a uall: [x:A]. B[x] top: Top pair: <a, b> int: sqequal: t equal: t ∈ T
Definitions unfolded in proof :  unzip: unzip(as) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  map-fst-zip map-snd-zip istype-int length_wf_nat top_wf set_subtype_base le_wf int_subtype_base list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis axiomSqEquality equalityIstype applyEquality intEquality lambdaEquality_alt natural_numberEquality sqequalBase equalitySymmetry isect_memberEquality_alt isectIsTypeImplies inhabitedIsType universeIsType

Latex:
\mforall{}[as,bs:Top  List].    unzip(zip(as;bs))  \msim{}  <as,  bs>  supposing  ||as||  =  ||bs||



Date html generated: 2020_05_19-PM-09_50_26
Last ObjectModification: 2020_02_27-PM-04_06_06

Theory : list_1


Home Index