Nuprl Lemma : gcd-unique-nat
∀n,m,g:ℕ. ((((g | n) ∧ (g | m)) ∧ (∀v:ℤ. ((v | n)
⇒ (v | m)
⇒ (v | g))))
⇒ (g = gcd(n;m) ∈ ℤ))
Proof
Definitions occuring in Statement :
divides: b | a
,
gcd: gcd(a;b)
,
nat: ℕ
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
member: t ∈ T
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
iff: P
⇐⇒ Q
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
gcd_p: GCD(a;b;y)
,
cand: A c∧ B
,
guard: {T}
Lemmas referenced :
assoced_nelim,
gcd_wf,
gcd-non-neg,
le_wf,
gcd_unique,
gcd_sat_pred,
and_wf,
divides_wf,
all_wf,
nat_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
sqequalHypSubstitution,
productElimination,
thin,
lemma_by_obid,
dependent_functionElimination,
hypothesisEquality,
dependent_set_memberEquality,
setElimination,
rename,
hypothesis,
isectElimination,
natural_numberEquality,
independent_functionElimination,
because_Cache,
intEquality,
sqequalRule,
lambdaEquality,
functionEquality,
independent_pairFormation
Latex:
\mforall{}n,m,g:\mBbbN{}. ((((g | n) \mwedge{} (g | m)) \mwedge{} (\mforall{}v:\mBbbZ{}. ((v | n) {}\mRightarrow{} (v | m) {}\mRightarrow{} (v | g)))) {}\mRightarrow{} (g = gcd(n;m)))
Date html generated:
2016_05_14-PM-09_25_24
Last ObjectModification:
2015_12_26-PM-08_03_03
Theory : num_thy_1
Home
Index