Nuprl Lemma : is-power_wf
∀[n:ℕ+]. ∀[x:ℕ].  (is-power(n;x) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
is-power: is-power(n;x)
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
is-power: is-power(n;x)
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
value-type-has-value, 
nat_wf, 
set-value-type, 
le_wf, 
istype-int, 
int-value-type, 
iroot_wf, 
eq_int_wf, 
fastexp_wf, 
nat_plus_subtype_nat, 
istype-nat, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
callbyvalueReduce, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
intEquality, 
Error :lambdaEquality_alt, 
natural_numberEquality, 
hypothesisEquality, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
Error :universeIsType
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[x:\mBbbN{}].    (is-power(n;x)  \mmember{}  \mBbbB{})
Date html generated:
2019_06_20-PM-02_34_14
Last ObjectModification:
2019_03_19-AM-10_49_24
Theory : num_thy_1
Home
Index