Nuprl Lemma : is-power_wf

[n:ℕ+]. ∀[x:ℕ].  (is-power(n;x) ∈ 𝔹)


Proof




Definitions occuring in Statement :  is-power: is-power(n;x) nat_plus: + nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T is-power: is-power(n;x) has-value: (a)↓ uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B
Lemmas referenced :  value-type-has-value nat_wf set-value-type le_wf istype-int int-value-type iroot_wf eq_int_wf fastexp_wf nat_plus_subtype_nat istype-nat nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule callbyvalueReduce extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_isectElimination intEquality Error :lambdaEquality_alt,  natural_numberEquality hypothesisEquality applyEquality setElimination rename because_Cache axiomEquality equalityTransitivity equalitySymmetry Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :universeIsType

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[x:\mBbbN{}].    (is-power(n;x)  \mmember{}  \mBbbB{})



Date html generated: 2019_06_20-PM-02_34_14
Last ObjectModification: 2019_03_19-AM-10_49_24

Theory : num_thy_1


Home Index