Nuprl Lemma : quadratic-residue_functionality

a,a',p:ℤ.  ((a' ≡ mod p)  (a' is quadratic residue mod ⇐⇒ is quadratic residue mod p))


Proof




Definitions occuring in Statement :  quadratic-residue: is quadratic residue mod p eqmod: a ≡ mod m all: x:A. B[x] iff: ⇐⇒ Q implies:  Q int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] quadratic-residue: is quadratic residue mod p iff: ⇐⇒ Q and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q exists: x:A. B[x] uimplies: supposing a
Lemmas referenced :  eqmod_wf exists_wf iff_wf eqmod_functionality_wrt_eqmod eqmod_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis intEquality independent_pairFormation sqequalRule lambdaEquality multiplyEquality because_Cache addLevel productElimination impliesFunctionality existsFunctionality dependent_functionElimination independent_isectElimination independent_functionElimination existsLevelFunctionality

Latex:
\mforall{}a,a',p:\mBbbZ{}.    ((a'  \mequiv{}  a  mod  p)  {}\mRightarrow{}  (a'  is  a  quadratic  residue  mod  p  \mLeftarrow{}{}\mRightarrow{}  a  is  a  quadratic  residue  mod  p))



Date html generated: 2016_05_14-PM-04_27_27
Last ObjectModification: 2015_12_26-PM-08_05_24

Theory : num_thy_1


Home Index