Nuprl Lemma : select-int-vec-mul

[x:ℤ]. ∀[as:ℤ List]. ∀[i:ℕ||as||].  (x as[i] as[i])


Proof




Definitions occuring in Statement :  int-vec-mul: as select: L[n] length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] multiply: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int-vec-mul: as top: Top subtype_rel: A ⊆B int_seg: {i..j-} sq_stable: SqStable(P) implies:  Q lelt: i ≤ j < k and: P ∧ Q squash: T sq_type: SQType(T) all: x:A. B[x] guard: {T}
Lemmas referenced :  list_wf length_wf int_seg_wf sq_stable__le select_wf top_wf subtype_rel_list select-map int_subtype_base subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination hypothesis sqequalRule isect_memberEquality voidElimination voidEquality hypothesisEquality applyEquality lambdaEquality multiplyEquality intEquality setElimination rename natural_numberEquality independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination dependent_functionElimination equalityTransitivity equalitySymmetry sqequalAxiom

Latex:
\mforall{}[x:\mBbbZ{}].  \mforall{}[as:\mBbbZ{}  List].  \mforall{}[i:\mBbbN{}||as||].    (x  *  as[i]  \msim{}  x  *  as[i])



Date html generated: 2016_05_14-AM-06_56_43
Last ObjectModification: 2016_01_14-PM-08_44_35

Theory : omega


Home Index