Nuprl Lemma : select-int-vec-mul
∀[x:ℤ]. ∀[as:ℤ List]. ∀[i:ℕ||as||].  (x * as[i] ~ x * as[i])
Proof
Definitions occuring in Statement : 
int-vec-mul: a * as
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
int-vec-mul: a * as
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
squash: ↓T
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
Lemmas referenced : 
list_wf, 
length_wf, 
int_seg_wf, 
sq_stable__le, 
select_wf, 
top_wf, 
subtype_rel_list, 
select-map, 
int_subtype_base, 
subtype_base_sq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
multiplyEquality, 
intEquality, 
setElimination, 
rename, 
natural_numberEquality, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
sqequalAxiom
Latex:
\mforall{}[x:\mBbbZ{}].  \mforall{}[as:\mBbbZ{}  List].  \mforall{}[i:\mBbbN{}||as||].    (x  *  as[i]  \msim{}  x  *  as[i])
Date html generated:
2016_05_14-AM-06_56_43
Last ObjectModification:
2016_01_14-PM-08_44_35
Theory : omega
Home
Index