Nuprl Lemma : subtract-wf-partial
∀[x,y:partial(Base)].  (x - y ∈ partial(ℤ))
Proof
Definitions occuring in Statement : 
partial: partial(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtract: n - m
, 
int: ℤ
, 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
subtract: n - m
, 
has-value: (a)↓
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
prop: ℙ
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
squash: ↓T
Lemmas referenced : 
partial-not-exception, 
base_wf, 
partial_wf, 
is-exception_wf, 
minus-is-int-iff, 
subtract_wf, 
int-value-type, 
base-member-partial, 
partial-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
independent_isectElimination, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
callbyvalueAdd, 
productElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
isect_memberEquality, 
addExceptionCases, 
minusExceptionCases, 
independent_functionElimination, 
voidElimination, 
imageElimination, 
imageMemberEquality
Latex:
\mforall{}[x,y:partial(Base)].    (x  -  y  \mmember{}  partial(\mBbbZ{}))
Date html generated:
2016_05_14-AM-06_10_27
Last ObjectModification:
2016_01_14-PM-07_50_16
Theory : partial_1
Home
Index