Nuprl Lemma : member-per-or-right

[A,B:Type]. ∀[b:B].  (<0, b> ∈ per-or(A;B))


Proof




Definitions occuring in Statement :  per-or: per-or(A;B) uall: [x:A]. B[x] member: t ∈ T pair: <a, b> natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T per-or: per-or(A;B) per-exists: per-exists(A;a.B[a]) so_lambda: λ2x.t[x] per-or-family: per-or-family(A;B) so_apply: x[s] has-value: (a)↓ uimplies: supposing a
Lemmas referenced :  member-per-product per-value_wf per-or-family_wf member-per-value has-value_wf_base is-exception_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality sqleReflexivity divergentSqle independent_isectElimination baseClosed lemma_by_obid

Latex:
\mforall{}[A,B:Type].  \mforall{}[b:B].    (ɘ,  b>  \mmember{}  per-or(A;B))



Date html generated: 2019_06_20-AM-11_30_38
Last ObjectModification: 2018_08_22-PM-02_06_18

Theory : per!type


Home Index