Nuprl Lemma : per-or_wf

[A,B:Type].  (per-or(A;B) ∈ Type)


Proof




Definitions occuring in Statement :  per-or: per-or(A;B) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T per-or: per-or(A;B) so_lambda: λ2x.t[x] per-or-family: per-or-family(A;B) subtype_rel: A ⊆B type-function: type-function{i:l}(A) so_apply: x[s]
Lemmas referenced :  per-exists_wf per-value_wf per-or-family_wf subtype_rel_self type-function_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule hypothesisEquality applyEquality instantiate axiomEquality equalityTransitivity equalitySymmetry universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[A,B:Type].    (per-or(A;B)  \mmember{}  Type)



Date html generated: 2019_06_20-AM-11_30_32
Last ObjectModification: 2018_08_22-PM-02_07_16

Theory : per!type


Home Index