Nuprl Lemma : per-or_wf
∀[A,B:Type].  (per-or(A;B) ∈ Type)
Proof
Definitions occuring in Statement : 
per-or: per-or(A;B)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
per-or: per-or(A;B)
, 
so_lambda: λ2x.t[x]
, 
per-or-family: per-or-family(A;B)
, 
subtype_rel: A ⊆r B
, 
type-function: type-function{i:l}(A)
, 
so_apply: x[s]
Lemmas referenced : 
per-exists_wf, 
per-value_wf, 
per-or-family_wf, 
subtype_rel_self, 
type-function_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
hypothesisEquality, 
applyEquality, 
instantiate, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[A,B:Type].    (per-or(A;B)  \mmember{}  Type)
Date html generated:
2019_06_20-AM-11_30_32
Last ObjectModification:
2018_08_22-PM-02_07_16
Theory : per!type
Home
Index