Nuprl Lemma : no-excluded-middle-quot-true

¬(∀P:ℙ. ⇃(P ∨ (↓¬P)))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] prop: all: x:A. B[x] not: ¬A squash: T or: P ∨ Q true: True
Definitions unfolded in proof :  uimplies: supposing a so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] or: P ∨ Q prop: all: x:A. B[x] has-value: (a)↓ uall: [x:A]. B[x] member: t ∈ T false: False implies:  Q not: ¬A and: P ∧ Q quotient: x,y:A//B[x; y] squash: T top: Top
Lemmas referenced :  equiv_rel_true true_wf not_wf squash_wf quotient_wf sqle_wf_base is-exception_wf has-value_wf_base exception-not-bottom bottom_diverge istype-sqle bottom-sqle not_id_sqeq_bottom istype-void member-not
Rules used in proof :  independent_isectElimination Error :unionIsType,  Error :lambdaEquality_alt,  cumulativity unionEquality Error :universeIsType,  Error :functionIsType,  dependent_functionElimination equalitySymmetry equalityTransitivity Error :equalityIstype,  Error :inhabitedIsType,  universeEquality hypothesisEquality functionExtensionality applyEquality sqequalRule because_Cache baseClosed isectElimination voidElimination hypothesis thin independent_functionElimination sqequalHypSubstitution extract_by_obid introduction divergentSqle sqleReflexivity sqleRule cut rename Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution productElimination promote_hyp pertypeElimination pointwiseFunctionalityForEquality Error :productIsType,  sqequalBase unionElimination imageElimination sqequalSqle Error :isect_memberEquality_alt

Latex:
\mneg{}(\mforall{}P:\mBbbP{}.  \00D9(P  \mvee{}  (\mdownarrow{}\mneg{}P)))



Date html generated: 2019_06_20-PM-00_32_43
Last ObjectModification: 2018_11_29-PM-04_55_48

Theory : quot_1


Home Index