Nuprl Lemma : not-quotient-function-subtype

¬(∀[X,A:Type]. ∀[E:A ⟶ A ⟶ ℙ].
    (EquivRel(A;a,b.E[a;b])  ((X ⟶ (a,b:A//E[a;b])) ⊆(f,g:X ⟶ A//fun-equiv(X;a,b.↓E[a;b];f;g)))))


Proof




Definitions occuring in Statement :  fun-equiv: fun-equiv(X;a,b.E[a; b];f;g) equiv_rel: EquivRel(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] subtype_rel: A ⊆B uall: [x:A]. B[x] prop: so_apply: x[s1;s2] not: ¬A squash: T implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  not: ¬A implies:  Q uall: [x:A]. B[x] member: t ∈ T prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a subtype_rel: A ⊆B quotient: x,y:A//B[x; y] false: False and: P ∧ Q cand: c∧ B all: x:A. B[x] true: True sq_type: SQType(T) guard: {T}
Lemmas referenced :  istype-universe equiv_rel_wf subtype_rel_wf quotient_wf fun-equiv_wf base_wf true_wf istype-base equiv_rel_true squash_wf quotient-member-eq subtype_base_sq subtype_rel_self int_subtype_base fun-equiv-rel equiv_rel_squash quotient-squash
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  sqequalRule Error :isectIsType,  cut instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination thin universeEquality hypothesis Error :inhabitedIsType,  hypothesisEquality Error :functionIsType,  Error :universeIsType,  because_Cache Error :lambdaEquality_alt,  applyEquality functionEquality independent_isectElimination independent_functionElimination baseClosed equalityTransitivity equalitySymmetry pertypeElimination promote_hyp productElimination Error :productIsType,  Error :equalityIstype,  sqequalBase dependent_functionElimination natural_numberEquality cumulativity intEquality voidElimination

Latex:
\mneg{}(\mforall{}[X,A:Type].  \mforall{}[E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
        (EquivRel(A;a,b.E[a;b])
        {}\mRightarrow{}  ((X  {}\mrightarrow{}  (a,b:A//E[a;b]))  \msubseteq{}r  (f,g:X  {}\mrightarrow{}  A//fun-equiv(X;a,b.\mdownarrow{}E[a;b];f;g)))))



Date html generated: 2019_06_20-PM-00_32_59
Last ObjectModification: 2018_11_26-AM-00_13_31

Theory : quot_1


Home Index