Nuprl Lemma : sq_stable__anti_sym

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  SqStable(AntiSym(T;x,y.R[x;y]))


Proof




Definitions occuring in Statement :  anti_sym: AntiSym(T;x,y.R[x; y]) sq_stable: SqStable(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  anti_sym: AntiSym(T;x,y.R[x; y]) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] subtype_rel: A ⊆B sq_stable: SqStable(P)
Lemmas referenced :  sq_stable__all all_wf equal_wf sq_stable__equal squash_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality cumulativity functionEquality applyEquality functionExtensionality hypothesis independent_functionElimination lambdaFormation because_Cache universeEquality dependent_functionElimination axiomEquality isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    SqStable(AntiSym(T;x,y.R[x;y]))



Date html generated: 2016_10_21-AM-09_42_43
Last ObjectModification: 2016_08_01-PM-09_48_52

Theory : rel_1


Home Index