Nuprl Lemma : cond_rel_star_equiv
∀[T:Type]. ∀[P:T ⟶ ℙ]. ∀[R1,E:T ⟶ T ⟶ ℙ].
  (EquivRel(T)(_1 E _2) 
⇒ when P, R1 => E 
⇒ R1 preserves P 
⇒ when P, R1^* => E)
Proof
Definitions occuring in Statement : 
rel_star: R^*
, 
cond_rel_implies: when P, R1 => R2
, 
preserved_by: R preserves P
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
cond_rel_implies: when P, R1 => R2
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
preserved_by_wf, 
cond_rel_implies_wf, 
equiv_rel_wf, 
cond_rel_star_monotone, 
rel_star_wf, 
subtype_rel_self, 
rel_star_of_equiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
Error :inhabitedIsType, 
Error :functionIsType, 
Error :universeIsType, 
universeEquality, 
independent_functionElimination, 
Error :lambdaFormation_alt, 
dependent_functionElimination, 
because_Cache, 
instantiate
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[R1,E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (EquivRel(T)($_{1}$  E  $_{2}$)  {}\mRightarrow{}  when  P,  R1  =>  E  {}\mRightarrow{}  R1  pre\000Cserves  P  {}\mRightarrow{}  when  P,  rel\_star(T;  R1)  =>  E)
Date html generated:
2019_06_20-PM-00_30_50
Last ObjectModification:
2018_09_26-PM-00_46_13
Theory : relations
Home
Index