Nuprl Lemma : cond_rel_star_equiv

[T:Type]. ∀[P:T ⟶ ℙ]. ∀[R1,E:T ⟶ T ⟶ ℙ].
  (EquivRel(T)(_1 _2)  when P, R1 =>  R1 preserves  when P, R1^* => E)


Proof




Definitions occuring in Statement :  rel_star: R^* cond_rel_implies: when P, R1 => R2 preserved_by: preserves P equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: infix_ap: y implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2y.t[x; y] infix_ap: y so_apply: x[s1;s2] cond_rel_implies: when P, R1 => R2 all: x:A. B[x] subtype_rel: A ⊆B
Lemmas referenced :  preserved_by_wf cond_rel_implies_wf equiv_rel_wf cond_rel_star_monotone rel_star_wf subtype_rel_self rel_star_of_equiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality Error :inhabitedIsType,  Error :functionIsType,  Error :universeIsType,  universeEquality independent_functionElimination Error :lambdaFormation_alt,  dependent_functionElimination because_Cache instantiate

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[R1,E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (EquivRel(T)($_{1}$  E  $_{2}$)  {}\mRightarrow{}  when  P,  R1  =>  E  {}\mRightarrow{}  R1  pre\000Cserves  P  {}\mRightarrow{}  when  P,  rel\_star(T;  R1)  =>  E)



Date html generated: 2019_06_20-PM-00_30_50
Last ObjectModification: 2018_09_26-PM-00_46_13

Theory : relations


Home Index