Nuprl Lemma : rel_star_of_equiv

[T:Type]. ∀[E:T ⟶ T ⟶ ℙ].  ∀x,y:T.  (EquivRel(T)(_1 _2)  (x (E^*) y)  (x y))


Proof




Definitions occuring in Statement :  rel_star: R^* equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  rel_star: R^* infix_ap: y uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] nat: decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True rel_exp: R^n eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt guard: {T} equiv_rel: EquivRel(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) bool: 𝔹 unit: Unit it: bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b trans: Trans(T;x,y.E[x; y]) nequal: a ≠ b ∈ 
Lemmas referenced :  exists_wf nat_wf rel_exp_wf equiv_rel_wf all_wf infix_ap_wf subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf subtype_rel_self set_wf less_than_wf primrec-wf2 equal_wf and_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int less_than_transitivity1 le_weakening less_than_irreflexivity eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int not-equal-2
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination hypothesis lambdaEquality applyEquality hypothesisEquality Error :functionIsType,  Error :universeIsType,  Error :inhabitedIsType,  universeEquality rename setElimination cumulativity because_Cache functionEquality instantiate dependent_set_memberEquality natural_numberEquality dependent_functionElimination unionElimination independent_pairFormation voidElimination independent_functionElimination independent_isectElimination addEquality isect_memberEquality voidEquality intEquality minusEquality functionExtensionality hyp_replacement equalitySymmetry applyLambdaEquality equalityElimination equalityTransitivity dependent_pairFormation promote_hyp productEquality

Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:T.    (EquivRel(T)($_{1}$  E  $_{2\mbackslash{}ff\000C7d$)  {}\mRightarrow{}  (x  rel\_star(T;  E)  y)  {}\mRightarrow{}  (x  E  y))



Date html generated: 2019_06_20-PM-00_30_48
Last ObjectModification: 2018_09_26-PM-00_46_12

Theory : relations


Home Index