Nuprl Lemma : rel_plus-TI
∀T:Type. ∀R:T ⟶ T ⟶ ℙ.  ((∀Q:T ⟶ ℙ. TI(T;x,y.R+ x y;x.Q[x])) 
⇒ (∀Q:T ⟶ ℙ. TI(T;x,y.R[x;y];x.Q[x])))
Proof
Definitions occuring in Statement : 
rel_plus: R+
, 
TI: TI(T;x,y.R[x; y];t.Q[t])
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
TI: TI(T;x,y.R[x; y];t.Q[t])
, 
so_apply: x[s]
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x y.t[x; y]
, 
infix_ap: x f y
Lemmas referenced : 
set_wf, 
all_wf, 
rel_plus_wf, 
TI_wf, 
rel-rel-plus
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
lemma_by_obid, 
isectElimination, 
lambdaEquality, 
applyEquality, 
universeEquality, 
setEquality, 
setElimination, 
rename, 
functionEquality, 
because_Cache, 
cumulativity, 
instantiate, 
dependent_set_memberEquality
Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}Q:T  {}\mrightarrow{}  \mBbbP{}.  TI(T;x,y.R\msupplus{}  x  y;x.Q[x]))  {}\mRightarrow{}  (\mforall{}Q:T  {}\mrightarrow{}  \mBbbP{}.  TI(T;x,y.R[x;y];x.Q[x])))
Date html generated:
2016_05_14-PM-03_54_08
Last ObjectModification:
2015_12_26-PM-06_57_22
Theory : relations2
Home
Index