Nuprl Lemma : rel_plus-TI

T:Type. ∀R:T ⟶ T ⟶ ℙ.  ((∀Q:T ⟶ ℙTI(T;x,y.R+ y;x.Q[x]))  (∀Q:T ⟶ ℙTI(T;x,y.R[x;y];x.Q[x])))


Proof




Definitions occuring in Statement :  rel_plus: R+ TI: TI(T;x,y.R[x; y];t.Q[t]) prop: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q TI: TI(T;x,y.R[x; y];t.Q[t]) so_apply: x[s] member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s1;s2] subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] infix_ap: y
Lemmas referenced :  set_wf all_wf rel_plus_wf TI_wf rel-rel-plus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution sqequalRule cut hypothesis dependent_functionElimination thin hypothesisEquality independent_functionElimination lemma_by_obid isectElimination lambdaEquality applyEquality universeEquality setEquality setElimination rename functionEquality because_Cache cumulativity instantiate dependent_set_memberEquality

Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}Q:T  {}\mrightarrow{}  \mBbbP{}.  TI(T;x,y.R\msupplus{}  x  y;x.Q[x]))  {}\mRightarrow{}  (\mforall{}Q:T  {}\mrightarrow{}  \mBbbP{}.  TI(T;x,y.R[x;y];x.Q[x])))



Date html generated: 2016_05_14-PM-03_54_08
Last ObjectModification: 2015_12_26-PM-06_57_22

Theory : relations2


Home Index