Nuprl Lemma : rel-rel-plus

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀x,y:T.  ((x y)  (x R+ y))


Proof




Definitions occuring in Statement :  rel_plus: R+ uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q rel_plus: R+ infix_ap: y member: t ∈ T prop: exists: x:A. B[x] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B
Lemmas referenced :  nat_plus_subtype_nat rel_exp_wf rel_exp_one less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalRule applyEquality hypothesisEquality functionEquality cumulativity universeEquality dependent_pairFormation dependent_set_memberEquality natural_numberEquality cut independent_pairFormation introduction imageMemberEquality thin baseClosed sqequalHypSubstitution hypothesis lemma_by_obid isectElimination dependent_functionElimination productElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:T.    ((x  R  y)  {}\mRightarrow{}  (x  R\msupplus{}  y))



Date html generated: 2016_05_14-PM-03_53_32
Last ObjectModification: 2016_01_14-PM-11_10_37

Theory : relations2


Home Index