Nuprl Lemma : rel-rel-plus
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀x,y:T.  ((x R y) 
⇒ (x R+ y))
Proof
Definitions occuring in Statement : 
rel_plus: R+
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rel_plus: R+
, 
infix_ap: x f y
, 
member: t ∈ T
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
nat_plus_subtype_nat, 
rel_exp_wf, 
rel_exp_one, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalRule, 
applyEquality, 
hypothesisEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
natural_numberEquality, 
cut, 
independent_pairFormation, 
introduction, 
imageMemberEquality, 
thin, 
baseClosed, 
sqequalHypSubstitution, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}x,y:T.    ((x  R  y)  {}\mRightarrow{}  (x  R\msupplus{}  y))
Date html generated:
2016_05_14-PM-03_53_32
Last ObjectModification:
2016_01_14-PM-11_10_37
Theory : relations2
Home
Index