Nuprl Lemma : continuous-monotone-isect
∀[A:Type]. ∀[F:A ⟶ Type ⟶ Type].  ContinuousMonotone(T.⋂a:A. F[a;T]) supposing ∀a:A. ContinuousMonotone(T.F[a;T])
Proof
Definitions occuring in Statement : 
continuous-monotone: ContinuousMonotone(T.F[T]), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
isect: ⋂x:A. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s1;s2], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
continuous-monotone: ContinuousMonotone(T.F[T]), 
and: P ∧ Q, 
type-monotone: Monotone(T.F[T]), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uiff: uiff(P;Q), 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
type-continuous: Continuous(T.F[T]), 
prop: ℙ, 
strong-type-continuous: Continuous+(T.F[T]), 
ext-eq: A ≡ B, 
guard: {T}
Lemmas referenced : 
subtype_rel_isect, 
equal_wf, 
subtype_rel_wf, 
nat_wf, 
subtype_rel_weakening, 
all_wf, 
continuous-monotone_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isectEquality, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
lambdaEquality, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
hypothesis, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
axiomEquality, 
isect_memberEquality, 
universeEquality, 
independent_pairEquality, 
functionEquality, 
instantiate
Latex:
\mforall{}[A:Type].  \mforall{}[F:A  {}\mrightarrow{}  Type  {}\mrightarrow{}  Type].
    ContinuousMonotone(T.\mcap{}a:A.  F[a;T])  supposing  \mforall{}a:A.  ContinuousMonotone(T.F[a;T])
Date html generated:
2017_04_14-AM-07_36_34
Last ObjectModification:
2017_02_27-PM-03_08_46
Theory : subtype_1
Home
Index