Nuprl Lemma : is-above-int
∀[n:ℤ]. ∀[z:Base].  z = n ∈ ℤ supposing is-above(ℤ;n;z)
Proof
Definitions occuring in Statement : 
is-above: is-above(T;a;z)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
base: Base
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
is-above: is-above(T;a;z)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
is-above_wf, 
base_wf, 
int_is_mono, 
subtype_base_sq, 
int_subtype_base, 
has-value_wf_base, 
is-exception_wf, 
and_wf, 
equal_wf, 
sqle_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
extract_by_obid, 
isectElimination, 
intEquality, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
sqequalSqle, 
divergentSqle, 
instantiate, 
cumulativity, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
applyEquality, 
hyp_replacement, 
dependent_set_memberEquality, 
independent_pairFormation, 
lambdaEquality, 
setElimination, 
rename, 
setEquality
Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[z:Base].    z  =  n  supposing  is-above(\mBbbZ{};n;z)
Date html generated:
2016_10_21-AM-09_41_33
Last ObjectModification:
2016_07_12-AM-05_03_38
Theory : subtype_1
Home
Index