Nuprl Lemma : is-above-int

[n:ℤ]. ∀[z:Base].  n ∈ ℤ supposing is-above(ℤ;n;z)


Proof




Definitions occuring in Statement :  is-above: is-above(T;a;z) uimplies: supposing a uall: [x:A]. B[x] int: base: Base equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a is-above: is-above(T;a;z) exists: x:A. B[x] and: P ∧ Q prop: sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} subtype_rel: A ⊆B
Lemmas referenced :  is-above_wf base_wf int_is_mono subtype_base_sq int_subtype_base has-value_wf_base is-exception_wf and_wf equal_wf sqle_wf_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis extract_by_obid isectElimination intEquality hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry sqequalSqle divergentSqle instantiate cumulativity independent_isectElimination dependent_functionElimination independent_functionElimination applyEquality hyp_replacement dependent_set_memberEquality independent_pairFormation lambdaEquality setElimination rename setEquality

Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[z:Base].    z  =  n  supposing  is-above(\mBbbZ{};n;z)



Date html generated: 2016_10_21-AM-09_41_33
Last ObjectModification: 2016_07_12-AM-05_03_38

Theory : subtype_1


Home Index