Nuprl Lemma : singleton-subtype
∀[A,B:Type].  ∀[a:A]. ({z:B| z = a ∈ B}  ⊆r A) supposing strong-subtype(A;B)
Proof
Definitions occuring in Statement : 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
strong-subtype: strong-subtype(A;B)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
subtype_rel_sets, 
equal_wf, 
exists_wf, 
subtype_rel_transitivity, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
lambdaEquality, 
cumulativity, 
applyEquality, 
hypothesis, 
independent_isectElimination, 
setElimination, 
rename, 
setEquality, 
lambdaFormation, 
dependent_pairFormation, 
axiomEquality, 
isect_memberEquality, 
productEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[A,B:Type].    \mforall{}[a:A].  (\{z:B|  z  =  a\}    \msubseteq{}r  A)  supposing  strong-subtype(A;B)
Date html generated:
2017_04_14-AM-07_36_50
Last ObjectModification:
2017_02_27-PM-03_09_02
Theory : subtype_1
Home
Index