Nuprl Lemma : singleton-subtype

[A,B:Type].  ∀[a:A]. ({z:B| a ∈ B}  ⊆A) supposing strong-subtype(A;B)


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] set: {x:A| B[x]}  universe: Type equal: t ∈ T
Definitions unfolded in proof :  strong-subtype: strong-subtype(A;B) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a cand: c∧ B guard: {T} so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] prop: all: x:A. B[x] implies:  Q exists: x:A. B[x]
Lemmas referenced :  subtype_rel_sets equal_wf exists_wf subtype_rel_transitivity subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesisEquality because_Cache lambdaEquality cumulativity applyEquality hypothesis independent_isectElimination setElimination rename setEquality lambdaFormation dependent_pairFormation axiomEquality isect_memberEquality productEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A,B:Type].    \mforall{}[a:A].  (\{z:B|  z  =  a\}    \msubseteq{}r  A)  supposing  strong-subtype(A;B)



Date html generated: 2017_04_14-AM-07_36_50
Last ObjectModification: 2017_02_27-PM-03_09_02

Theory : subtype_1


Home Index