Nuprl Lemma : mkterm_wf

[Op:Type]. ∀[opr:Op]. ∀[bts:(varname() List × term(Op)) List].  (mkterm(opr;bts) ∈ term(Op))


Proof




Definitions occuring in Statement :  mkterm: mkterm(opr;bts) term: term(opr) varname: varname() list: List uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mkterm: mkterm(opr;bts) coterm-fun: coterm-fun(opr;T) not: ¬A implies:  Q false: False subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  term-ext varname_wf nullvar_wf istype-void ext-eq_inversion term_wf coterm-fun_wf subtype_rel_weakening list_wf istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality inrEquality_alt independent_pairEquality setIsType universeIsType sqequalRule functionIsType equalityIstype inhabitedIsType applyEquality independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry productEquality isect_memberEquality_alt isectIsTypeImplies instantiate universeEquality

Latex:
\mforall{}[Op:Type].  \mforall{}[opr:Op].  \mforall{}[bts:(varname()  List  \mtimes{}  term(Op))  List].    (mkterm(opr;bts)  \mmember{}  term(Op))



Date html generated: 2020_05_19-PM-09_53_41
Last ObjectModification: 2020_03_09-PM-04_08_18

Theory : terms


Home Index