Nuprl Lemma : mkterm_wf
∀[Op:Type]. ∀[opr:Op]. ∀[bts:(varname() List × term(Op)) List].  (mkterm(opr;bts) ∈ term(Op))
Proof
Definitions occuring in Statement : 
mkterm: mkterm(opr;bts)
, 
term: term(opr)
, 
varname: varname()
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mkterm: mkterm(opr;bts)
, 
coterm-fun: coterm-fun(opr;T)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
term-ext, 
varname_wf, 
nullvar_wf, 
istype-void, 
ext-eq_inversion, 
term_wf, 
coterm-fun_wf, 
subtype_rel_weakening, 
list_wf, 
istype-universe
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
inrEquality_alt, 
independent_pairEquality, 
setIsType, 
universeIsType, 
sqequalRule, 
functionIsType, 
equalityIstype, 
inhabitedIsType, 
applyEquality, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
instantiate, 
universeEquality
Latex:
\mforall{}[Op:Type].  \mforall{}[opr:Op].  \mforall{}[bts:(varname()  List  \mtimes{}  term(Op))  List].    (mkterm(opr;bts)  \mmember{}  term(Op))
Date html generated:
2020_05_19-PM-09_53_41
Last ObjectModification:
2020_03_09-PM-04_08_18
Theory : terms
Home
Index