Nuprl Lemma : inr-eta

[x:Top]. ∀d:Top Top. inr outr(d)  supposing (inr ) ∈ (Top Top)


Proof




Definitions occuring in Statement :  outr: outr(x) uimplies: supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] inr: inr  union: left right sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a outr: outr(x) sq_type: SQType(T) implies:  Q guard: {T} true: True false: False prop:
Lemmas referenced :  subtype_base_sq int_subtype_base equal_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation unionElimination thin sqequalRule sqequalHypSubstitution applyEquality lambdaEquality natural_numberEquality because_Cache hypothesis instantiate lemma_by_obid isectElimination cumulativity intEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination promote_hyp sqequalAxiom unionEquality hypothesisEquality inrEquality isect_memberEquality

Latex:
\mforall{}[x:Top].  \mforall{}d:Top  +  Top.  d  \msim{}  inr  outr(d)    supposing  d  =  (inr  x  )



Date html generated: 2016_05_13-PM-03_20_33
Last ObjectModification: 2015_12_26-AM-09_10_48

Theory : union


Home Index