Nuprl Lemma : pair-lex_well_fnd
∀[A,B:Type]. ∀[Ra:A ⟶ A ⟶ ℙ]. ∀[Rb:B ⟶ B ⟶ ℙ].
  (WellFnd{i}(A;a1,a2.Ra a1 a2) 
⇒ WellFnd{i}(B;b1,b2.Rb b1 b2) 
⇒ WellFnd{i}(A × B;p1,p2.pair-lex(A;Ra;Rb) p1 p2))
Proof
Definitions occuring in Statement : 
pair-lex: pair-lex(A;Ra;Rb)
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
all: ∀x:A. B[x]
, 
pair-lex: pair-lex(A;Ra;Rb)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
or: P ∨ Q
, 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
product_well_fnd, 
pair-lex_wf, 
all_wf, 
or_wf, 
and_wf, 
equal_wf, 
wellfounded_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaFormation, 
independent_functionElimination, 
dependent_functionElimination, 
productElimination, 
applyEquality, 
lambdaEquality, 
universeEquality, 
productEquality, 
functionEquality, 
spreadEquality, 
cumulativity
Latex:
\mforall{}[A,B:Type].  \mforall{}[Ra:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[Rb:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    (WellFnd\{i\}(A;a1,a2.Ra  a1  a2)
    {}\mRightarrow{}  WellFnd\{i\}(B;b1,b2.Rb  b1  b2)
    {}\mRightarrow{}  WellFnd\{i\}(A  \mtimes{}  B;p1,p2.pair-lex(A;Ra;Rb)  p1  p2))
Date html generated:
2016_05_13-PM-03_18_37
Last ObjectModification:
2015_12_26-AM-09_06_51
Theory : well_fnd
Home
Index