Nuprl Lemma : wellfounded-irreflexive

[A:Type]. ∀[r:A ⟶ A ⟶ ℙ].  ∀a:A. r[a;a]) supposing WellFnd{i}(A;x,y.r[x;y])


Proof




Definitions occuring in Statement :  wellfounded: WellFnd{i}(A;x,y.R[x; y]) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] not: ¬A function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] not: ¬A implies:  Q false: False prop: so_apply: x[s1;s2] subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] wellfounded: WellFnd{i}(A;x,y.R[x; y]) so_lambda: λ2x.t[x] so_apply: x[s] guard: {T}
Lemmas referenced :  wellfounded_wf equal_wf false_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin because_Cache hypothesis sqequalHypSubstitution independent_functionElimination voidElimination applyEquality functionExtensionality hypothesisEquality cumulativity sqequalRule lambdaEquality dependent_functionElimination universeEquality extract_by_obid isectElimination isect_memberEquality equalityTransitivity equalitySymmetry functionEquality hyp_replacement

Latex:
\mforall{}[A:Type].  \mforall{}[r:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    \mforall{}a:A.  (\mneg{}r[a;a])  supposing  WellFnd\{i\}(A;x,y.r[x;y])



Date html generated: 2016_10_21-AM-09_35_41
Last ObjectModification: 2016_07_12-AM-04_59_42

Theory : well_fnd


Home Index