Nuprl Lemma : wellfounded-irreflexive
∀[A:Type]. ∀[r:A ⟶ A ⟶ ℙ].  ∀a:A. (¬r[a;a]) supposing WellFnd{i}(A;x,y.r[x;y])
Proof
Definitions occuring in Statement : 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x y.t[x; y]
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
Lemmas referenced : 
wellfounded_wf, 
equal_wf, 
false_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
because_Cache, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
universeEquality, 
extract_by_obid, 
isectElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
hyp_replacement
Latex:
\mforall{}[A:Type].  \mforall{}[r:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].    \mforall{}a:A.  (\mneg{}r[a;a])  supposing  WellFnd\{i\}(A;x,y.r[x;y])
Date html generated:
2016_10_21-AM-09_35_41
Last ObjectModification:
2016_07_12-AM-04_59_42
Theory : well_fnd
Home
Index