Nuprl Lemma : bag-in-subtype2
∀[A,B:Type].  ∀[b:bag(B)]. b ∈ bag(A) supposing ∀x:B. (x ↓∈ b 
⇒ (∃a:bag(A). x ↓∈ a)) supposing strong-subtype(A;B)
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag: bag(T)
, 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
strong-subtype: strong-subtype(A;B)
, 
cand: A c∧ B
Lemmas referenced : 
bag-in-subtype, 
bag-member_wf, 
bag_wf, 
subtype_rel_bag, 
strong-subtype_wf, 
istype-universe, 
bag-member-strong-subtype
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
lambdaFormation_alt, 
dependent_functionElimination, 
independent_functionElimination, 
universeIsType, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
axiomEquality, 
functionIsType, 
productIsType, 
applyEquality, 
productElimination, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[A,B:Type].
    \mforall{}[b:bag(B)].  b  \mmember{}  bag(A)  supposing  \mforall{}x:B.  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (\mexists{}a:bag(A).  x  \mdownarrow{}\mmember{}  a)) 
    supposing  strong-subtype(A;B)
Date html generated:
2019_10_15-AM-11_01_29
Last ObjectModification:
2019_08_15-PM-03_50_04
Theory : bags
Home
Index