Nuprl Lemma : bag-in-subtype

[A,B:Type].  ∀[b:bag(B)]. b ∈ bag(A) supposing ∀x:B. (x ↓∈  (x ∈ A)) supposing strong-subtype(A;B)


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag: bag(T) strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T sq_stable: SqStable(P) implies:  Q uiff: uiff(P;Q) and: P ∧ Q squash: T prop: all: x:A. B[x] respects-equality: respects-equality(S;T) exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} nat: false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top or: P ∨ Q subtype_rel: A ⊆B cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: sq_type: SQType(T) less_than: a < b so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) bag-append: as bs append: as bs list_ind: list_ind single-bag: {x} iff: ⇐⇒ Q rev_implies:  Q sq_or: a ↓∨ b
Lemmas referenced :  sq_stable__respects-equality strong-subtype-iff-respects-equality respects-equality-bag bag_wf strong-subtype_wf istype-universe bag-member_wf equal-wf bag_to_squash_list all_wf member_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases list-subtype-bag nil_wf product_subtype_list colength-cons-not-zero colength_wf_list istype-le list_wf subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf cons_wf istype-nat bag-append_wf single-bag_wf bag-member-append bag-member-single
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination because_Cache productElimination independent_isectElimination sqequalRule imageMemberEquality baseClosed imageElimination universeIsType inhabitedIsType instantiate universeEquality functionIsType equalityIstype dependent_functionElimination promote_hyp equalitySymmetry hyp_replacement applyLambdaEquality lambdaEquality_alt functionEquality isectEquality cumulativity rename lambdaFormation_alt setElimination intWeakElimination natural_numberEquality approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation axiomEquality equalityTransitivity functionIsTypeImplies unionElimination voidEquality closedConclusion applyEquality hypothesis_subsumption dependent_set_memberEquality_alt baseApply intEquality sqequalBase inlFormation_alt inrFormation_alt

Latex:
\mforall{}[A,B:Type].
    \mforall{}[b:bag(B)].  b  \mmember{}  bag(A)  supposing  \mforall{}x:B.  (x  \mdownarrow{}\mmember{}  b  {}\mRightarrow{}  (x  \mmember{}  A))  supposing  strong-subtype(A;B)



Date html generated: 2019_10_15-AM-11_01_23
Last ObjectModification: 2019_08_15-PM-03_41_06

Theory : bags


Home Index