Nuprl Lemma : bag-incomparable_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[b:bag(T)].  (bag-incomparable(T;R;b) ∈ ℙ)


Proof




Definitions occuring in Statement :  bag-incomparable: bag-incomparable(T;R;b) bag: bag(T) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-incomparable: bag-incomparable(T;R;b) so_lambda: λ2x.t[x] implies:  Q prop: infix_ap: y so_apply: x[s]
Lemmas referenced :  all_wf bag-member_wf not_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality functionEquality hypothesis applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[b:bag(T)].    (bag-incomparable(T;R;b)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-03_12_10
Last ObjectModification: 2015_12_27-AM-09_23_35

Theory : bags


Home Index