Nuprl Lemma : bag-inject_wf

[A,B:Type]. ∀[b:bag(A)]. ∀[f:A ⟶ B].  (bag-inject(A;b;B;f) ∈ ℙ)


Proof




Definitions occuring in Statement :  bag-inject: bag-inject(A;b;B;f) bag: bag(T) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-inject: bag-inject(A;b;B;f) prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  inject_wf bag-member_wf subtype_rel_dep_function set_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesisEquality hypothesis applyEquality lambdaEquality independent_isectElimination setElimination rename because_Cache lambdaFormation axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[b:bag(A)].  \mforall{}[f:A  {}\mrightarrow{}  B].    (bag-inject(A;b;B;f)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-02_42_03
Last ObjectModification: 2015_12_27-AM-09_39_57

Theory : bags


Home Index