Nuprl Lemma : bag-member-single-weak

[T:Type]. ∀[x,y:T].  (x ↓∈ {y} ⇐⇒ y ∈ T)


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs single-bag: {x} uall: [x:A]. B[x] iff: ⇐⇒ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q uiff: uiff(P;Q) uimplies: supposing a prop: all: x:A. B[x] rev_implies:  Q bag-member: x ↓∈ bs squash: T
Lemmas referenced :  bag-member-single bag-member_wf single-bag_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis productElimination independent_isectElimination cumulativity dependent_functionElimination sqequalRule independent_pairEquality lambdaEquality axiomEquality imageElimination imageMemberEquality baseClosed isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x,y:T].    (x  \mdownarrow{}\mmember{}  \{y\}  \mLeftarrow{}{}\mRightarrow{}  x  =  y)



Date html generated: 2017_10_01-AM-08_53_35
Last ObjectModification: 2017_07_26-PM-04_35_19

Theory : bags


Home Index