Nuprl Lemma : bag-monad_wf

BagMonad ∈ Monad


Proof




Definitions occuring in Statement :  bag-monad: BagMonad monad: Monad member: t ∈ T
Definitions unfolded in proof :  bag-monad: BagMonad member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a
Lemmas referenced :  mk_monad_wf bag_wf single-bag_wf bag-combine_wf bag-combine-single-left bag-combine-single-right bag-combine-combine
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality cumulativity hypothesisEquality hypothesis universeEquality isect_memberEquality dependent_functionElimination because_Cache applyEquality functionEquality independent_isectElimination isect_memberFormation introduction lambdaFormation axiomEquality

Latex:
BagMonad  \mmember{}  Monad



Date html generated: 2016_05_15-PM-02_29_15
Last ObjectModification: 2015_12_27-AM-09_49_54

Theory : bags


Home Index