Nuprl Lemma : bag-monad_wf
BagMonad ∈ Monad
Proof
Definitions occuring in Statement : 
bag-monad: BagMonad
, 
monad: Monad
, 
member: t ∈ T
Definitions unfolded in proof : 
bag-monad: BagMonad
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
Lemmas referenced : 
mk_monad_wf, 
bag_wf, 
single-bag_wf, 
bag-combine_wf, 
bag-combine-single-left, 
bag-combine-single-right, 
bag-combine-combine
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
isect_memberEquality, 
dependent_functionElimination, 
because_Cache, 
applyEquality, 
functionEquality, 
independent_isectElimination, 
isect_memberFormation, 
introduction, 
lambdaFormation, 
axiomEquality
Latex:
BagMonad  \mmember{}  Monad
Date html generated:
2016_05_15-PM-02_29_15
Last ObjectModification:
2015_12_27-AM-09_49_54
Theory : bags
Home
Index