Nuprl Lemma : empty-sub-bag

T:Type. ∀b:bag(T).  sub-bag(T;{};b)


Proof




Definitions occuring in Statement :  sub-bag: sub-bag(T;as;bs) empty-bag: {} bag: bag(T) all: x:A. B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] sub-bag: sub-bag(T;as;bs) exists: x:A. B[x] member: t ∈ T top: Top prop: uall: [x:A]. B[x]
Lemmas referenced :  empty_bag_append_lemma equal_wf bag_wf bag-append_wf empty-bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation dependent_pairFormation hypothesisEquality sqequalRule cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination universeEquality

Latex:
\mforall{}T:Type.  \mforall{}b:bag(T).    sub-bag(T;\{\};b)



Date html generated: 2016_05_15-PM-02_36_17
Last ObjectModification: 2015_12_27-AM-09_44_53

Theory : bags


Home Index