Nuprl Lemma : map-member-wf
∀[A,B:Type]. ∀[L:A List]. ∀[f:{a:A| (a ∈ L)}  ⟶ B].  (map(f;L) ∈ B List)
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
map: map(f;as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
list-subtype, 
map_wf, 
l_member_wf, 
list_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
setEquality, 
hypothesis, 
functionEquality, 
because_Cache, 
universeEquality, 
isect_memberFormation, 
introduction, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[L:A  List].  \mforall{}[f:\{a:A|  (a  \mmember{}  L)\}    {}\mrightarrow{}  B].    (map(f;L)  \mmember{}  B  List)
Date html generated:
2016_05_15-PM-02_40_11
Last ObjectModification:
2015_12_27-AM-09_41_36
Theory : bags
Home
Index