Nuprl Lemma : sub-bag-append-trivial1
∀[T:Type]. ∀[b,x:bag(T)].  ∀y:bag(T). (sub-bag(T;b;x) 
⇒ sub-bag(T;b;x + y))
Proof
Definitions occuring in Statement : 
sub-bag: sub-bag(T;as;bs)
, 
bag-append: as + bs
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sub-bag: sub-bag(T;as;bs)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
bag-append_wf, 
bag-append-assoc, 
istype-void, 
equal_wf, 
bag_wf, 
sub-bag_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
isect_memberEquality_alt, 
voidElimination, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
equalityIstype, 
because_Cache, 
universeIsType, 
inhabitedIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[b,x:bag(T)].    \mforall{}y:bag(T).  (sub-bag(T;b;x)  {}\mRightarrow{}  sub-bag(T;b;x  +  y))
Date html generated:
2019_10_15-AM-11_01_02
Last ObjectModification:
2018_11_30-AM-10_05_07
Theory : bags
Home
Index