Nuprl Lemma : sub-bag-empty

[T:Type]. ∀[b:bag(T)].  uiff(sub-bag(T;b;{});b {} ∈ bag(T))


Proof




Definitions occuring in Statement :  sub-bag: sub-bag(T;as;bs) empty-bag: {} bag: bag(T) uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T prop: all: x:A. B[x] implies:  Q
Lemmas referenced :  sub-bag_wf empty-bag_wf equal-wf-T-base bag_wf sub-bag-equal empty-sub-bag sub-bag_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality axiomEquality rename baseClosed universeEquality independent_isectElimination dependent_functionElimination hyp_replacement equalitySymmetry Error :applyLambdaEquality,  equalityTransitivity sqequalRule independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].    uiff(sub-bag(T;b;\{\});b  =  \{\})



Date html generated: 2016_10_25-AM-10_26_46
Last ObjectModification: 2016_07_12-AM-06_42_53

Theory : bags


Home Index