Nuprl Lemma : sub-bag-lub

[T:Type]
  ∀eq:EqDecider(T). ∀as,bs,cs:bag(T).  ((sub-bag(T;cs;as) ∨ sub-bag(T;cs;bs))  sub-bag(T;cs;bag-lub(eq;as;bs)))


Proof




Definitions occuring in Statement :  bag-lub: bag-lub(eq;b1;b2) sub-bag: sub-bag(T;as;bs) bag: bag(T) deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q or: P ∨ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] and: P ∧ Q implies:  Q or: P ∨ Q guard: {T} prop:
Lemmas referenced :  bag-lub-property sub-bag_transitivity bag-lub_wf or_wf sub-bag_wf bag_wf deq_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation dependent_functionElimination productElimination unionElimination independent_functionElimination universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}as,bs,cs:bag(T).
        ((sub-bag(T;cs;as)  \mvee{}  sub-bag(T;cs;bs))  {}\mRightarrow{}  sub-bag(T;cs;bag-lub(eq;as;bs)))



Date html generated: 2016_05_15-PM-08_09_39
Last ObjectModification: 2015_12_27-PM-04_12_31

Theory : bags_2


Home Index