Nuprl Lemma : bag-lub-property
∀[T:Type]
  ∀eq:EqDecider(T). ∀as,bs:bag(T).
    (sub-bag(T;as;bag-lub(eq;as;bs))
    ∧ sub-bag(T;bs;bag-lub(eq;as;bs))
    ∧ (∀cs:bag(T). (sub-bag(T;as;cs) 
⇒ sub-bag(T;bs;cs) 
⇒ sub-bag(T;bag-lub(eq;as;bs);cs))))
Proof
Definitions occuring in Statement : 
bag-lub: bag-lub(eq;b1;b2)
, 
sub-bag: sub-bag(T;as;bs)
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
true: True
, 
uimplies: b supposing a
, 
guard: {T}
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
le: A ≤ B
, 
nat: ℕ
, 
uiff: uiff(P;Q)
Lemmas referenced : 
nat_wf, 
imax_lb, 
deq_wf, 
bag_wf, 
sub-bag_wf, 
less_than'_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
imax_ub, 
iff_weakening_equal, 
bag-count-bag-lub, 
bag-count_wf, 
true_wf, 
squash_wf, 
le_wf, 
bag-lub_wf, 
sub-bag-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
productElimination, 
independent_functionElimination, 
introduction, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
because_Cache, 
sqequalRule, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
inlFormation, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_pairEquality, 
axiomEquality, 
independent_pairFormation, 
inrFormation, 
setElimination, 
rename
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}as,bs:bag(T).
        (sub-bag(T;as;bag-lub(eq;as;bs))
        \mwedge{}  sub-bag(T;bs;bag-lub(eq;as;bs))
        \mwedge{}  (\mforall{}cs:bag(T).  (sub-bag(T;as;cs)  {}\mRightarrow{}  sub-bag(T;bs;cs)  {}\mRightarrow{}  sub-bag(T;bag-lub(eq;as;bs);cs))))
Date html generated:
2016_05_15-PM-08_09_36
Last ObjectModification:
2016_01_16-PM-01_27_46
Theory : bags_2
Home
Index