Nuprl Lemma : bag-lub-property

[T:Type]
  ∀eq:EqDecider(T). ∀as,bs:bag(T).
    (sub-bag(T;as;bag-lub(eq;as;bs))
    ∧ sub-bag(T;bs;bag-lub(eq;as;bs))
    ∧ (∀cs:bag(T). (sub-bag(T;as;cs)  sub-bag(T;bs;cs)  sub-bag(T;bag-lub(eq;as;bs);cs))))


Proof




Definitions occuring in Statement :  bag-lub: bag-lub(eq;b1;b2) sub-bag: sub-bag(T;as;bs) bag: bag(T) deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q cand: c∧ B member: t ∈ T iff: ⇐⇒ Q rev_implies:  Q implies:  Q squash: T prop: subtype_rel: A ⊆B true: True uimplies: supposing a guard: {T} or: P ∨ Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top le: A ≤ B nat: uiff: uiff(P;Q)
Lemmas referenced :  nat_wf imax_lb deq_wf bag_wf sub-bag_wf less_than'_wf int_formula_prop_wf int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermVar_wf intformle_wf intformnot_wf satisfiable-full-omega-tt decidable__le imax_ub iff_weakening_equal bag-count-bag-lub bag-count_wf true_wf squash_wf le_wf bag-lub_wf sub-bag-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination hypothesis productElimination independent_functionElimination introduction applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry intEquality because_Cache sqequalRule natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination inlFormation unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll independent_pairEquality axiomEquality independent_pairFormation inrFormation setElimination rename

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}as,bs:bag(T).
        (sub-bag(T;as;bag-lub(eq;as;bs))
        \mwedge{}  sub-bag(T;bs;bag-lub(eq;as;bs))
        \mwedge{}  (\mforall{}cs:bag(T).  (sub-bag(T;as;cs)  {}\mRightarrow{}  sub-bag(T;bs;cs)  {}\mRightarrow{}  sub-bag(T;bag-lub(eq;as;bs);cs))))



Date html generated: 2016_05_15-PM-08_09_36
Last ObjectModification: 2016_01_16-PM-01_27_46

Theory : bags_2


Home Index