Nuprl Lemma : Russell-theorem-take2

¬(Type ∈ Type)


Proof




Definitions occuring in Statement :  not: ¬A member: t ∈ T universe: Type
Definitions unfolded in proof :  not: ¬A implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: all: x:A. B[x] subtype_rel: A ⊆B guard: {T} isect2: T1 ⋂ T2 bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff and: P ∧ Q cand: c∧ B squash: T false: False
Lemmas referenced :  isect2_decomp bool_wf isect2_subtype_rel2 isect2_subtype_rel not_wf base_wf isect2_wf equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut instantiate lemma_by_obid sqequalHypSubstitution isectElimination thin universeEquality baseClosed because_Cache hypothesis hypothesisEquality applyEquality cumulativity equalityTransitivity equalitySymmetry isect_memberEquality unionElimination equalityElimination setEquality dependent_functionElimination productElimination independent_pairFormation lambdaEquality setElimination rename imageMemberEquality introduction imageElimination independent_functionElimination voidElimination dependent_set_memberEquality

Latex:
\mneg{}(Type  \mmember{}  Type)



Date html generated: 2016_05_15-PM-01_44_06
Last ObjectModification: 2016_01_15-PM-11_17_40

Theory : basic


Home Index